

ALLEN INSTITUTE for IN SCIENCE

A. BUCHIN¹, R. D. HODGE¹, K. A. SMITH¹, J. GOLDY¹, N. JORSTAD¹, A. TORKELSON¹, E. S. KAPLAN¹, E. J. MELIEF², M. J. HAWRYLYCZ¹, D. C. KEEN², E. S. LEIN^{1,2} and J. A. MILLER¹

¹Allen Institute For Brain Science, Seattle, WA; ²University of Washington, Seattle, WA

Summary

- Dementia affects nearly ~11% of the U.S. population over the age of 65, with the incidence doubling every 5 years up to 40-60% after the age of 90. Around 2/3 of these cases are correlated with Alzheimer's disease.
- The key strategy to identify AD-related changes in cell type proportions and properties is to generate a well-annotated reference cell type classification of the neurotypical brain, and then map AD data to that reference to discern pathological changes in specific cell types during disease progression.
- We present a workflow for constructing a neurotypical brain reference classification and strategies for mapping disease datasets for middle temporal gyrus (MTG) based on 10x Genomics single nucleus RNA sequencing data.
- Non-linear dimensionality reduction and clustering of nearly 90 thousand nuclei from 3 patients identified 29 glutamatergic neuron, 41 GABAergic neuron and 10 non-neuronal types, very similar to recently published results using SMART-seq methodologies [Hodge et al. 2019].
- We applied neural network and random forest classifiers to identify known cell types and cell classes in the tissue from aged and Alzheimer's patients.
- We found that the new reference dataset based on 10X Genomics MTG data could be successfully used to identify known cell types in AD tissues based on patterns of gene expression.

Patient and region selection

snRNA-seq (10x) Spatial mappin

3

Transcriptomic analysis

Human MTG smart-seq **Random forest Classifier** Astro L1-2 FGFR3 GFA Exc L3-4 RORB CARM1P Exc L4-5 RORB DAPK2 Exc L5-6 FEZF2 EFTUD Exc L5-6 THEMIS FGF1 Inh L1-2 LAMP5 DBP Inh L1-2 VIP TSPAN12 Inh L1-3 VIP SYT6-Inh L2-4 PVALB WFDC2 Inh L2-5 VIP TYR -Inh L3-6 VIP HS3ST3A-Inh L5-6 LHX6 GLP1R Micro L1-6 TYROBP ~14 000 cells (smart-seq) ~90 000 cells (10x) [Hodge et al 2019] https://portal.brain-map.org

Initial identification of cells major classes in 10x data

Transcriptomic cell type analysis of human middle temporal gyrus in the context of Alzheimer's disease

RNA-seq clustering workflow

