

1 Allen Institute for Brain Science, Seattle, WA, USA; 2 University of Washingon, Seattle, WA, USA; 3 Cedars-Sinai Medical Center, Seattle, WA, USA; 3 Cedars-Sinai Medical Center, Los Angeles CA, USA; 4 California Institute of Technology, Pasadena, CA, USA; 5 Swedish Medical Center, Seattle, WA, USA; 6 University of British Columbia, Vancouver, BC, CA

WG1 is less severe and **WG4** is more severe.

approximately double the spine density as compared to **WG1** cells.

ment of synchronous activity.

Tissue processing Morphology

Morpho-electric properties and computational simulation of human dentate gyrus granule cells from the epileptogenic hippocampus

Anatoly Buchin,¹ Rebecca de Frates,¹ Anirban Nandi,¹ Peter Chong,¹ Rusty Mann,¹ Jim Berg,¹ Brian Kalmbach,² Ueli Rutishauser,^{3,4} Ryder Gwinn,⁵ Staci Sorensen,¹ Jonathan Ting^{1,2} & Costas A. Anastassiou^{1,6}

This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02- 05CH11231. We also would like to thank Blue Brain Project for computational resources and BluePyOpt package.

@neurojoy

1.2