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Associations between in vitro, in vivo and in
silico cell classes in mouse primary visual
cortex

Yina Wei1,2 , Anirban Nandi2, Xiaoxuan Jia2,3, Joshua H. Siegle 2,
Daniel Denman4, Soo Yeun Lee 2, Anatoly Buchin2,5, Werner Van Geit 6,
Clayton P. Mosher7, Shawn Olsen 2 & Costas A. Anastassiou 7,8,9,10

Thebrain consists ofmany cell classes yet in vivo electrophysiology recordings
are typically unable to identify and monitor their activity in the behaving
animal. Here, we employed a systematic approach to link cellular, multi-modal
in vitro properties from experiments with in vivo recorded units via compu-
tational modeling and optotagging experiments. We found two one-channel
and six multi-channel clusters in mouse visual cortex with distinct in vivo
properties in terms of activity, cortical depth, and behavior. We used bio-
physical models to map the two one- and the six multi-channel clusters to
specific in vitro classes with uniquemorphology, excitability and conductance
properties that explain their distinct extracellular signatures and functional
characteristics. These concepts were tested in ground-truth optotagging
experiments with two inhibitory classes unveiling distinct in vivo properties.
This multi-modal approach presents a powerful way to separate in vivo clus-
ters and infer their cellular properties from first principles.

The cellular composition of the brain is diverse, with recent studies in
rodent neocortex identifying tens of cell types1–4. The expectation is
that these types serve distinct roles in behavior. However, disen-
tangling their function is challenging. The difficulty is twofold. First,
extensive single-cell characterization of neurons, mainly propelled by
advances in sequencing technology, allows sampling from large
populations at the cellular level, revealing a multitude of cell types.
These types exist within detailed, molecular-based taxonomies of the
neocortex, hippocampus, and another brain circuits3,5,6. In vitro, cellular
electrophysiology and morphology reconstructions, in turn, offer a
phenomenology-based approach to defining taxonomies that is easier
translated to in vivo dynamics, e.g., via spike response properties7,8.
Taxonomies accounting for the three main data modalities simulta-
neously are scarce, with a few noteworthy exceptions2,9,10.

The second challenge lies in monitoring cell classes identified via
their in vitro molecular, electrophysiology, and morphology proper-
ties in vivo. In vivo imaging of virally or genetically targeted popula-
tions offers remarkable insights into how these populations organize
during behavior but are unable to resolve single action potentials due
to their low sampling rate and the highly nonlinear relationship
between spikes and calcium indicator fluorescence11–13. Single-wire or
high-density extracellular electrophysiology recordings, on the other
hand, offer much improved temporal resolution to monitor spiking
and spike-related activity in vivo, even if their ability to resolve cell
types is limited. Typically, a handful of spike features can separate
between major classes, e.g., the extracellular action potential (EAP)
width separates fast-spiking (FS) from other so-called regular-spiking
(RS) units14–17. Early slice experiments indicated that RS and FS cells
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probably correspond to pyramidal cells and interneurons,
respectively18, while other studies found a more intricate
correspondence17,19,20. With recent advancements drastically increas-
ing the electrode density of silicon probes21, spatiotemporal informa-
tion on EAP waveforms increased significantly, allowing for more
refined clustering of in vivo EAPs22,23. Even so, linking cellular taxo-
nomies to in vivo signatures, i.e., classification, in a systematic manner
for in vivo recordings has been difficult.

Single-cell computational models make it possible to link various
types of data by incorporating constraints and generating predictions
across data modalities, e.g., predicting a particular ion conductance
based on properties of the electrophysiological response, such as spike
shape or frequency. In a recent study, a large-scale model generation
and evaluation effort developed bio-realistic, single-cell models for
mouse primary visual cortex (V1) accounting for ion conductances
along the entire neural morphology24. Importantly, these models clo-
sely capture distinguishing properties of major excitatory and inhibi-
tory classes integrating electrophysiology, morphology, and
transcriptomics data. A key aspect of conductance-based models is
their ability to emulate extracellular electrophysiology signatures such
as the EAP waveform25–27. Thus, thesemodels integrate a variety of data
modalities they were trained on (electrophysiology and morphology)
or validated against (transcriptomics) and predict a fourth data mod-
ality, i.e., the EAP waveform and its associated features.

Here, we show that unsupervised clustering of mouse V1 units
recorded via high-density Neuropixels probes21 results in two one-
channel and six multi-channel clusters with distinct EAP and EAP-
propagation profiles, respectively. Importantly, these clusters exhibit
functional differences and distinct coupling to endogenous oscilla-
tions, i.e., the main criterion for being considered truly distinct
populations in themicrocircuit. To determine the differences between
the individual clusters, we use biophysical models that capture single-
cell data from cortical transgenic mouse lines to define EAP templates.
Using a supervised classifier, we show that morphological spiny vs.
aspiny neurons closely map to RS and FS units, respectively, recorded
in vivo. Next, we map the six multi-channel clusters with their distinct
EAP propagation profiles to model populations, compare model
population setups and identify conductances and morphology fea-
tures that explain the EAP differences between the in vivo clusters. Our
newfound ability to separate between clusters is exemplified in
ground-truth, optotagging experiments where we separate between
two major inhibitory classes in vivo and show their distinct entrain-
ment profile to ongoing neocortical oscillations.

Results
EAP recordings from in vivo experiments and biophysical
models of cell types
Analysis of EAP waveforms of so-called “units” (putative single neu-
rons) typically cluster into two groups, RS vs. FS (Fig. 1a). We sought a
more refined classification scheme using data from a recent in vivo
survey of electrophysiological activity in awakemice23. We focused on
data from units in the primary visual cortex (V1) recorded using Neu-
ropixels probes (Fig. 1b). These probes offer a dense arrangement of
recording sites (Fig. 1c), which allows EAP signals from single units to
be detected on multiple recording channels (Fig. 1c; example unit #1:
an FS unit; example unit #2: an RS unit; bold: channels with largest EAP
amplitude). We analyzed units from 25 wild-type mice, 8 mice
expressed ChR2 in parvalbumin-positive cells (Pvalb), and 12 in
somatostatin-positive cells (Sst) (Fig. 1d). We only analyzed units
located in V1 with an average of 48 units per wild-type mouse being
well-isolated (unit isolation criteria: see Methods; Fig. 1d; the total
number of units = 1204) during spontaneous activity. The depth of
layer 4was determined fromwhere the visual stimulus (flash) evoked a
strong response in the current source density (CSD)28,29 (Fig. S1). The
unit location along the cortical depth was adjusted relative to layer 4

(depth 0 indicates the center of layer 4). The estimated soma location
of well-isolated units (based on EAP properties) in our study spanned
from layers 2/3 through 6, with the majority located in layers 4 and
5 (Fig. 1d).

To map the recorded EAP waveforms to specific cell classes, we
used biophysically detailed models of single neurons. These biophy-
sical models are developed in an unsupervised manner using a multi-
objective optimization platform that relies on standardized electro-
physiology features and the reconstructed cellular morphology to
distribute a set of ionic conductances relevant to cortical neurons24.
We developed single-cell models that represent a diverse set of
transgenicmouse lines to ensure broad coverage across cortical layers
and classes1. For our study, we accounted for 15 spiny (SP) and 18
aspiny (AP) single-cell, so-called “all-active”, biophysically realistic
models from V1 optimized based on in vitro single-cell electro-
physiology and morphology (Fig. S2). Notably, the SP vs. AP designa-
tion in our study is morphology-based and does not reflect any
electrophysiology features such as action potential waveform or spike
pattern. The experimental data to produce the single-cellmodels were
part of a systematic characterization of the mouse visual cortex where
a uniform experimental protocol was used to establish a taxonomy
based on cellular electrophysiology and morphology1,24.

Beyond reflecting key properties of various cell types in terms of
electrophysiology, morphology, and transcriptomics24,30, these bio-
physical single-cell models reproduce EAP signals in the vicinity of the
cellular morphology (Fig. 1e, top: spiny cell, cell ID: 395830185; bot-
tom: aspiny cell, cell ID: 469610831). Our computational approach
simulated the recording sites of a Neuropixels probe (see Methods27),
resulting in signals emulating in vivo unit recordings (Fig. 1f). In total,
15 spiny (Cre-reporter lines: 5 Nr5a1, 4 Scnn1a, 6 Rorb) and 18 aspiny
(Cre-reporter lines: 9 Pvalb, 9 Sst) single-cell models were developed
and included in the study covering a range of major reporter lines and
cortical depths (Fig. 1g) and especially layers 4 and 5 in accordance
with the in vivo experiments (Fig. 1d).

The standard waveform features reveal two clusters: RS and FS
Spontaneous and visually evoked activity (flashes) is recorded in vivo
in head-fixed animals implanted with Neuropixels probes in V1 while
running freely on a rotating disc (Fig. 2a; N = 1204 units from 25 mice
during spontaneous activity). For the EAP analysis, we derived the one-
channel EAP from the channel with the maximum EAP amplitude
(Fig. 2b, middle: red bolded trace), while the multi-channel EAP
includes additional channels above and below the maximum EAP
channel (Fig. 2b, middle). We define two one-channel EAP features
(Fig. 2b, left): trough-to-peak width (TPW) and repolarization time
(REP). TPWmeasures the time from the EAP trough until the peak. REP
measures the time from the EAP peak to the half-peak17,27,31. TPW and
REP are usually sufficient to classify units between narrow and wide
waveforms15,27, the result of the bimodal distribution of TPW in the
cortex (Fig. S3). We also found two major clusters in our in vivo data,
i.e., a narrow TPWcluster with reduced REP (Fig. 2d, bottom, blue) and
a wide TPW cluster with increased REP (Fig. 2d, bottom, red), respec-
tively. Both the elbowmethod and density method of unsupervised K-
means clustering22 independently confirmed the optimal number of
clusters is two. Specifically, the narrow waveform units exhibit lower
TPW (Fig. S3) and lower REP (Fig. S3) than the wide waveform units.
Furthermore, narrow waveform units (n = 281, 23.3%) exhibit elevated
spike frequency vs. wide waveform ones (n = 923, 76.7%): narrow
waveform units spike at a median firing rate of 4.85Hz (interquartile
range, IQR: 1.93–10.79Hz) while wide waveform units fire at a median
of 2.05Hz (IQR: 0.84–5.00Hz). Thus, narrow waveform units spike
significantly faster than their wide waveform counterparts
(Mann–Whitney U test, p = 3.5 × 10−18; Fig. S3). We conclude that nar-
row EAP waveforms approximately map to FS units while wide wave-
forms approximately correspond to RS units (Source Data 1).

Article https://doi.org/10.1038/s41467-023-37844-8

Nature Communications |         (2023) 14:2344 2



Spatial features reveal six distinct sub-clusters inmouse V1: 3 RS
and 3 FS
Multi-channel EAP waveforms introduce an additional dimension,
space, into the analysis. We accounted for the EAP amplitude and the
EAP propagation with respect to time (Fig. 2b, right) as a function of
recording distance to the largest EAP location, assumed to be closest
to the soma/axon initial segment25. For the multi-channel analysis
(Fig. 2b, middle), we calculate two additional spatial EAP features
(Fig. 2b, right): the inverse of the EAP propagation velocity below (1/
Vbelow) and above (1/Vabove) the soma22. 1/Vbelow and 1/Vabove are

separately estimated via linear regression (Fig. 2b, right, red lines). We
define a propagation symmetry index, the ratio of 1/Vbelow and 1/Vabove,
with a larger symmetry index indicating a more asymmetric propaga-
tion, for example, due to the presence of apical dendrites in excitatory
pyramidal neurons32. Looking at the multi-channel EAP features of FS
vs. RS, RS generally exhibits a more asymmetric EAP propagation
below vs. above the putative soma location than FS, Fig. 2c, d; Fig. S3c,
d, middle). We conclude that one-channel clusters RS and FS do not
only separate via TPW but, in fact, are also distinct in how their spikes
propagate along the extracellular space.
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We wondered whether multi-channel EAP features could further
inform the composition of FS and RS. To do so, we adopted the one-
channel clusters RS and FS and, for each of them, employed unsu-
pervised clustering using multi-channel features (1/Vbelow and 1/Vabove)
to further subdivide into multi-channel clusters. Unsupervised clus-
tering (K-means) indicated that the optimal number of multi-channel
clusters within FS and RS is three for each (Fig. 2d, right top; cluster #
independently estimated by the elbow method and density function).
The six groups (FS1–3, RS1–3) exhibit distinct multi-channel sig-
natures. For the RS group, RS1 and RS2 show mostly asymmetric
propagation, with their main difference being the supragranular pro-
pagation velocity, i.e., Vabove(RS1) > Vabove(RS2) (Fig. S4). RS1–3 exhibit

significant differences in terms of their spatial spread (Kruskal–Wallis
H-test; p-values corrected using the Holm–Bonferroni method for
multiple tests), with the EAP propagation of RS3 being more spatially
confined than RS1–2 while also exhibiting a faster infragranular spike
propagation velocity Vbelow (Fig. S4; Source Data 1). FS1–3 also exhibit
distinctpropagation signatures: while thepropagationprofile for FS1 is
symmetric and fast above and below the spike initiation location, FS2
andFS3 exhibit anasymmetric and slower direction-dependent profile.
Despite their different propagation profiles, FS1–3 exhibit no sig-
nificant difference in spatial spread (Fig. S4). Looking at the distribu-
tion of the cortical depth, the six clusters are distributed differently
across V1 layers (Fig. S5). We conclude that expanding the set from

Fig. 1 | Extracellular actionpotential (EAP) recordings from invivoepxeriments
andbiophysically realistic single-cellmodels. Extracellular action potential (EAP)
recordings from in vivo experiments (a–d) and single-cell modeling (e–g). a Left,
labels for Cre-line andmorphology (spiny vs. aspiny) groups of single neurons used
in this study characterized in vitro via intracellular electrophysiology and mor-
phology reconstructions. Right, in vivo EAP waveform analysis typically results in
two clusters, fast-spiking (FS) vs. regular-spiking (RS) units. b Primary visual cortex
(V1) in the mouse brain (left) and typical cortical depth placement of a Neuropixels
probe along V1 (right, from the Allen Reference Atlas-Mouse Brain86). c The 384
electrode sites of the Neuropixels probe are densely arranged along the linear
shank probe (left; 20μmvertical spacing, 2 sites per row; black squares: location of
recording sites). EAP waveforms from two example units (unit #1: FS; unit #2: RS),
including the channelwith the largest amplitude (closest to the soma, bolded lines)
and channels above and below the soma. d Top: the number of Neuropixels-
implanted mice for wild-type (n = 24), parvalbumin-expressing (Pvalb, n = 8), and

somatostatin-expressing (Sst, n = 12); bottom: the distribution of units per wild-
type mouse recorded in V1 during drifting gratings (total number of units = 204).
Distribution of units along the V1 depth axis with 0 indicating the center of layer 4.
e Bio-realistic, single-cell models of V1 (“all-active”) are generated from in vitro
experiments and activated via synaptic background to elicit intracellular activity
and associated EAP signals in the vicinity of the cellular morphology. The cellular
morphology is represented with a spherical soma and full dendritic reconstruction
(axon not shown). Example simulations of EAP signals are shown for a spiny (top:
red, cell ID: 395830185) and an aspiny (bottom: blue, cell ID: 469610831) single-cell
model. f Four examples of the multi-channel EAP, including the channel with the
largest amplitude (bolded lines, closest to the soma) and channels above andbelow
the soma (top: 2 spiny models; bottom: 2 aspiny models). g In total, 33 single-cell
models (15 spiny and 18 aspiny) were generated using a computational optimiza-
tion framework and included in the study covering a range of major reporter lines
and cortical depths. Source data are provided as a Source Data file.

Fig. 2 | Clustering of in vivo V1units fromwild-typemice basedonextracellular
action potential (EAP) features during drifting gratings results in two one-
channel and six multi-channel clusters with distinct EAP properties. a Animals
are exposed to visual stimuli (e.g., flashes and drifting gratings) while running on a
wheel with Neuropixels probes recording extracellular V1 activity. b One-channel
EAP waveform features (left) from the location of the largest EAP amplitude:
trough-peak width (TPW) and repolarization time (REP). Multi-channel EAP wave-
form features: the inverse of propagation velocity below (1/Vbelow) and above (1/
Vabove) soma are separately estimated by linear regression (right, red lines).
c Unsupervised clustering on one-channel EAP features (TPW and REP) results in
two major populations, fast-spiking (FS) and regular-spiking (RS) units.

Subsequently, unsupervised clustering of each population usingmulti-channel EAP
features (1/Vbelow and 1/Vabove) results in three clusters, respectively. c One- vs.
multi-channel clusters. d The one-channel clusters (923 RS and 281 FS from 25wild-
typemice, left),multi-channel clusters FS1–3 (right-top), andmulti-channel clusters
RS1–3 (right bottom) are shown including two clustering metrics: within-cluster
sum of squares (WCSS) and density function. The red dotted line indicates the
number of optimal clusters. t-distributed stochastic neighbor embedding (t-SNE)
for FS1–3 (right top, n = 130 FS1, n = 82 FS2, n = 69 FS3) and RS1–3 (right bottom,
n = 479 RS1, n = 235 RS2, n = 209RS3) units based on features extracted frommulti-
channel waveforms. The spatial propagation of EAPs is distinct for the clusters
(gray: individual units). Data are presented as mean ± SD (standard deviation).
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one- to multi-channel EAP features results in further separation within
the RS and FS groups into six finer but distinct groupings, three FS
(FS1–FS3) and three RS (RS1–RS3) clusters, that spread along the V1
depth axis.

Distinct functional properties of the in vivo clusters
To what extent do the in vivo clusters separated by their EAP proper-
ties also constitute functionally distinct cell populations? We looked
into the in vivo dynamics during behavior and whether the six clusters
showdistinctfiring properties during a visual stimulation task (drifting
gratings). Inter-spike interval (ISI) analysis shows thatmulti-channel RS
clusters exhibit significantly different firing properties: the ISI median
of FS is 19.63ms with a 95% confidence interval (CI) at [19.60–19.67]
ms, while the ISI median of RS is 53.37ms with 95% CI at [53.30–53.43]
ms (Fig. 3a, Mann–Whitney U test, p =0.0). To assess the temporal
structure of spiking during the task, we also calculated the coefficient
of variation (CV) that measures the variance of ISIs and the local var-
iation (LV) measuring variation in adjacent ISIs. We found that the
pattern of RS1 spiking is significantly different compared to RS2 and
RS3. Specifically, RS1 units exhibit faster, more stereotyped, and less

variable spiking than RS2–3 units. RS2–3 units, in turn, exhibit rela-
tively slower and more variable spiking dynamics (Fig. 3a). Notably,
multi-channel RS clusters also exhibit differences in their response to
visual presentation. Several measures that assess visual response
properties were calculated (see Methods), and we highlight
three relevant for drifting gratings: f1/f0, the modulation index, and
lifetime sparseness (Fig. 3a). Statistically significant differences emerge
between RS1 vs. RS2–3 in terms of the response metrics with RS2–3
exhibiting higher response sensitivity and selectivity over RS1, in
agreement with the higher CV and LV seen for RS2–3. No significant
difference in termsof visual responseswasobserved between FS1–3. In
summary, we found that RS is composed of functionally distinct
clusters that, beyond their distinct multi-channel properties, also
exhibit differences in their in vivo activity also during visual behavior.

Another measure to identify functionally distinct populations
looks at distinct spike phase-locking to ongoing local field potential
(LFP) oscillations27,33,34. We used theHilbert transformof the bandpass-
filtered LFP to assign each spike an instantaneous phase (Fig. S6a) in
several frequency bands (theta: 3–8Hz, alpha: 8–12.5 Hz, beta:
12.5–30Hz, low gamma: 30–50Hz, high gamma: 50–90Hz; Source
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Fig. 3 | Distinct activity and response properties of one-channel and multi-
channel clusters. a One-channel FS and RS clusters show distinct interspike
interval (ISI) distributions (Mann–Whitney U test, two-sided, p =0.0, total
2,900,284 spikes of FS, 4,586,637 spikes of RS). Response properties of the multi-
channel clusters to drifting gratings show that RS1–3 exhibit distinct properties in
the overall excitability (spike rate, coefficient of variation: CV, local variation: LV,
n = 419 RS1, n = 173 RS2, n = 153 RS3) and stimulus-dependent response character-
istics (f1/f0,modulation index, lifetime sparseness, n = 430 RS1, n = 182 RS2, n = 156
RS3). Kruskal–WallisH-test;p-values corrected using theHolm–Bonferronimethod
for multiple tests. *p <0.05, **p <0.01, ***p <0.001. b Phase distribution of exam-
ples of an FS (blue) and RS (red) unit at theta, alpha, beta, low gamma (lgamma),
high gamma (hgamma) frequency band (black arrow: preferred phase and kappa).

c Left: The percentage of phase-locked units of one-channel FS (n = 203) and RS
(n = 745) clusters at different LFP frequency bands: theta, alpha, beta, low gamma,
and high gamma. Two sample z tests for proportions with p values were corrected
by the Holm–Bonferroni method for multiple tests. Right: kappa and preferred
phase. Data are presented as mean ± SEM (standard error of the mean).
Mann–Whitney U test, two-sided, *p <0.05, **p <0.01, ***p <0.001. d, e Phase-
locking analysis of multi-channel RS (d n = 419 RS1, n = 173 RS2, n = 153 RS3) and FS
(e n = 100 FS1, n = 54 FS2, n = 49 FS3) clusters to ongoing oscillations in different
LFP bands. Kruskal–Wallis H-test; p-values corrected using the Holm–Bonferroni
method for multiple tests. *p <0.05, **p <0.01, ***p <0.001. Source data are pro-
vided as a Source Data file.
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Data 2). Starting with one-channel clusters, we found that units exhibit
a diverse level of entrainment to the LFP bands (per the Rayleigh test
for non-uniformity, seeMethods, Fig. S6b, Fig. 3b) with FS containing a
significantly higher percentage of phase-locked units than RS across
frequency bands (Fig. 3c, left). Notably, FS and RS coupling to in vivo
oscillations is input- and behavior-dependent, with a much lower
percentage of phase-locked neurons detected during spontaneous
activity (Fig. S7) than during drifting gratings (Fig. 3c, left) across fre-
quency bands, an observation in linewith other studies (e.g., ref. 13). In
general, the percentageof significantly entrained FS unitswashigh and
remained broadly unaffected by the specific LFP bands. In contrast, RS
couples preferentially to slow LFP oscillations (theta), with the per-
centage decreasing for higher frequencies (beta, gamma, and high
gamma). The pairwise comparison revealed that FS has stronger
phase-locking across frequency bands and spikes earlier in the cycle
than RS for beta and low gamma (Fig. 2f, g, p-values corrected for
multiple tests by Holm–Bonferroni method) in line with neocortical
patterns seen in monkey and human35, but in contrast with hippo-
campal oscillations where putative excitatory neurons typically fire
earlier than putative inhibitory ones36. We conclude that one-channel
RS and FS show distinct coupling properties to neocortical oscillation,
with FS coupling being stronger across bands and FS units firing earlier
than RS.

Next, we looked at multi-channel clusters and their dynamics
during oscillations. We found significant differences in LFP coupling
for RS1–3 in the low and high gamma bands, with RS2 exhibiting
stronger phase locking to low and high gamma than RS1 (Fig. 3d). The
preferred phase of RS1–3 remains similar at 180°–200° (RS2 just
below 180° vs. RS1 and RS3 just above 180°) (Fig. 3d). Cluster-specific
entrainment to LFP oscillations is also observed in FS clusters
(FS1–3). Specifically, FS3 exhibit stronger phase locking to high
gamma than FS2, with distinct preferred phases among the three
clusters in alpha, beta, and low gamma (Fig. 3e). We conclude that in
addition to their distinct spiking characteristics, multi-channel clus-
ters exhibit distinct coupling properties to LFP oscillations that
depend on the behavior.

We also looked at how to spike dynamics and coupling to oscil-
lations change with cortical depth. Based on the distance from pia, we
defined three regions: supragranular (broadly cortical layers 2–3),
granular (cortical layer 4), and infragranular (broadly cortical layers
5–6). Looking at one-channel clusters, FS shows consistently stronger
phase-coupling than RS across the cortical depth for all LFP bands
(Fig. S6c). Interestingly, both FS and RS show strong coupling in theta
and beta but a strong reduction in coupling in the intermediate alpha
band. This pattern is particularly pronounced in the supragranular and
granular regions, while in the infragranular region, there is reduced
coupling, especially for FS, compared to the rest of the cortical depth
regions (Fig. S6c).We also note the strong coupling of FS units to high-
frequency oscillations (e.g., high gamma), especially in the supra-
granular and granular regions, a characteristic of electrotonically
compact neurons able to follow very fast synaptic drive. In termsof the
spike phase, RS and FS spike broadly around the same phase, with the
exception of the granular region where significant differences
emergedbetween FS andRS for beta andgammabands. Looking at the
multi-channel clusters across cortical depth, we found the most sig-
nificant differences in the coupling strength of RS1–3 in supragranular
beta and low gamma, with kappa almost doubling between supra-
granular RS3 and RS1 in beta (Fig. S6d). Such diversity in coupling
strength among clusters is not observed in granular and infragranular
regions though we do find differences in the preferred spike phase of
RS1–3 in infragranular layers (Fig. S6d). It follows that these multi-
channel clusters, except for their distinct multi-channel signatures,
also have distinct patterns and roles in how they support ongoing
cortical oscillations. We conclude that one-channel RS and FS clusters,
as well as RS1–3, show distinct coupling patterns along the cortical

axis, especially supragranular RS1–3 in the beta bands and infra-
granular RS1–3 in the gamma bands.

Multimodal mapping between electrophysiology-, morphology-,
and Cre-reporter-based classes
What is the cellular identity of the clusters exhibiting suchdistinct EAP-
waveform and in vivo properties? To bridge between the in vivo
clusters and in vitro cell classes, we use biophysically realistic single-
neuron models of 18 morphologically aspiny (AP) and 15 spinies (SP)
mouse neurons (Table S1) that capture within cell type variability.
These models were generated from two data modalities: the recon-
structed morphology and the somatic electrophysiology response
resulting from in vitro whole-cell patch-clamp experiments24. We use
these models to simulate the EAP waveform and, in such a manner,
create EAP templates linked to ground truth, specific electro-
physiology-, morphology-, and Cre-reporter-based cell classes.

We show simulations for two example single-cell models, one SP
(Fig. 4a) and one AP (Fig. 4b). Somatic action potentials were evoked
via simulated convergent, Poisson-style synaptic input along the den-
dritic arbor (Fig. 4a, b). The simulated EAP from the model exhibits its
largest amplitude in the somatic region and actively propagates into
the dendrites. As for extracellular recordings, one- and multi-channel
features of AP and SP were calculated from the simulated EAP wave-
forms. We see that the trough-to-peak width (TPW) and repolarization
time (REP) of the simulated cells are very similar to the ones from
experimental recordings (Fig. 4c). Furthermore, cell class differences
predicted by simulations agree with in vivo recorded EAPs, e.g.,
simulated AP cells exhibit significantly lower TPW (two-sample t test,
p =0.00025) and REP (Mann–Whitney U test, p = 0.00024) than SP
ones (Fig. 4d). Furthermore, because the biophysical models agree
with experimental recordings for one-channel features TPW and REP,
they can be used to link between in vitro properties of cell class and
in vivo EAPs. We asked whether the experimentally measured intrinsic
properties of the actual cells each model represents differentiate
between morphology class AP and SP. Comparison between in vitro
cellular data used to develop each of the AP and SP models (same
mouse IDs as Fig. 4c, d) show statistically significant differences in
intrinsic properties known to differentiate between major excitatory
and inhibitory classes (spike width, adaptation, spike rate, and f–I
slope; Fig. 4e). We conclude that not only the models but also the
underlying in vitro experimentsmapping onRS andFS clusters, exhibit
robust separation in slice electrophysiology properties known to
separate excitatory from inhibitory classes.

To link between labels of in vivo units (RS vs. FS) and the mor-
phology classes of simulated neurons (spiny or SP vs. aspiny or AP), we
used a two-way classification process27. In one direction, the model-
based classifier was trained on one-channel EAP features (TPW, REP) of
models to discriminate between SP and AP neurons. This process
yielded 82.5% classification accuracy on the validation data set (sup-
port vector machine, SVM; training/validation set, 75%/25%; Fig. 4f).
Then, the model-based classifier was applied to the test data set
(in vivo clustered FS and RS units fromV1). Most FS units are labeled as
AP neurons, while the majority of RS is SP (Fig. 4f). We also tested the
opposite direction. In the experiment-based classifier, we trained on
one-channel EAP features (TPW, REP) of in vivo units to discriminate
between FS and RS clusters (training/validation set, 75%/25%), and
classification accuracy on the validation data set exceeded 99% (SVM;
Fig. 4g). When applying the classifier on the test datasets, i.e., model-
labeled AP and SP neurons, most AP neurons were labeled as FS and
most SP neurons as RS units (Fig. 4g).We conclude that themajority of
in vivoRSmap to in vitro SP cellswhile themajority of in vivo FSmap to
in vitro AP cells based on one-channel features TPW and REP.

Beyond the intrinsic properties and morphology classes, the
simulated neurons also contain Cre-line labels from the Cre-lines used
in vitro to target the individual cells. In a subsequent analysis, instead
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of using the morphology labels SP and AP, we used the transgenic line
label (excitatory: Scnn1a, Rorb, Nr5a1; inhibitory: Pvalb, Sst)1 of the
models as input to the experiment-based classifier to predict the one-
channel in vivo clusters (RS vs. FS). The excitatory classes (Scnn1a,
Rorb, and Nr5a1) aremainly classified as RS, whereas inhibitory classes
(Pvalb and Sst) are mainly classified as FS (Fig. 4h). We conclude that
the biophysicalmodels agreewith experimental in vivoEAP recordings

in terms of one-channel EAP features and reflect experimental intrinsic
and morphology class-dependent differences also observed in vitro.

Composition and properties of multi-channel RS clusters
We next attempt to deduce single-cell intrinsic electrophysiology and
morphology properties of the in vivo multi-channel clusters. We
first asked whether the single-cell models recapitulate the three
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multi-channel clusters for each class. Starting with the SP models, we
clustered the models based on their simulated multi-channel EAP fea-
tures (n = 15 SP models; K-means clustering). Two separate clustering
analyses (elbow method and the density function) determined the
number of SP clusters in our simulated data to be three, i.e., SP1–3.
Notably, the number of SP clusters coincides with the number of RS
clusters detected in vivo (RS1–3) (Fig. 5a). Among three RS clusters,
there is no significant difference in the largest amplitude channel
(Fig. 5a, right). However, the waveform propagation separates them
into three clusters (Fig. 5b). Looking at the multi-channel features (1/
Vbelow and 1/Vabove), there is correspondence between SP1with RS1, SP2
with RS2, and SP3 with RS3. This is also reflected in the distinct EAP
propagationproperties of the three SP clusters, with SP1 showing faster
supragranular propagation than SP2 while SP3 shows reduced infra-
granular propagation vs. SP1 (Fig. 5b).We conclude that thebiophysical
models of morphologically spiny neurons SP separate into three dis-
tinct clusters (SP1–3) based on the same multi-channel features that
also separate in vivo multi-channel RS units into clusters RS1–3 with
EAP propagation patterns that resemble model and in vivo clusters.

We looked deeper into the correspondence between the model-
based SP1-3 and in vivo clusters RS1–3 defined via the multi-channel
EAP features by using two-way classification: supervised classifiers
trained on the simulated EAPs of modeled neurons then applied to
in vivo units (“model-based classifier”), and supervised classifiers
trained on experimental in vivo units, then applied to the model
classes (“experiment-based classifier”). Specifically, the model-based
classifier trained on multi-channel EAP features (1/Vbelow and 1/Vabove)
to identify SP1–3 showed excellent performance (random forest;
classificationperformance> 94%;Fig. 5c). In anext step,we applied the
model-based classifier on the test experimental data sets (in vivo
clustered RS1–3) and found that, indeed, RS1 units are mapped to SP1,
RS2 to SP2, and RS3 to SP3 with high fidelity (performance: >94%;
Fig. 5c). We also pursued the opposite direction by building the
experiment-based classifier trained on multi-channel in vivo EAP fea-
tures to discriminate among RS1–3 and saw very high classification
accuracy (>99%; Fig. 5d). The experiment-based classifier on the test
simulation data sets (models clustered SP1–3), once more, cleanly
mapsSP1 toRS1, SP2 toRS2 andSP3 toRS3, respectively (Fig. 5d). Thus,
our initial results are validated by the two-way classification that
robustly maps model-based SP1–3 classes to in vivo RS1–3 clusters via
their multi-channel features.

Since RS1–3 are mapped to SP1–3, respectively, what other prop-
erties of the in vivo clusters RS1–3 can be deduced from the SP1–3 data
and associated models? We address this question for three data mod-
alities: models, morphologies, and intrinsic electrophysiology proper-
ties. First, we asked whether SP1–3 models can point to key differences
between the three clusters in terms of the conductance setup. Pairwise
comparison between SP1 and 3 model conductances indicates that the
axonal low-voltage activated Ca-conductance is increased for SP1 and

SP3 vs. SP2 (Cohen’s d effect size >0.8; Fig. 5e), i.e., a conductance
linked to elevated spike rate (bursting) and rapid spike recovery37. In
terms of cellular morphology, given SP1–3 have different spike propa-
gation profiles, we used a morphology feature looking at the cable
structure attached to the soma, the bifurcation distance. The bifurcation
distance is the normalized distance between the soma and the dendritic
bifurcation with a large bifurcation distance effectively translating to a
longer unobstructed path along the dendrite (see also Methods). Pair-
wise comparison of the bifurcation distance above soma and below
soma among SP1–3 (the reconstructed morphologies were also used to
develop the models) reveals differences in one property, the basal
dendrite bifurcation distance below the soma (Fig. 5f, g; see also
Methods). Specifically, SP1 and SP3 have different bifurcation distances,
especially below the soma (Fig. 5g). Notably, the morphology bifurca-
tion distance exhibits a strong linear relationship with the spike pro-
pagation speed across SP1–3 (Fig. 5g right, slope = 2.7, the correlation
coefficient r=0.8, p= 1.02× 10−7). A larger bifurcation distance results in
a lower spike propagation speed along the basal (negative bifurcation
distance) and apical (positive bifurcation distance) arbor. Thus, class-
dependent morphology properties that impact spike propagation can
also lead the class-dependent propagation speed and symmetry differ-
ences observed between SP1–3 (Fig. 5b). Finally, we compared in vitro
subthreshold (Fig. 5h) and spiking (Fig. 5i) intrinsic electrophysiology
properties among SP1–3 (the slice experiments also used to develop the
models) and found differences in the cellular time constant τ and peak
spike rate (response to dc current injections, Fig. 5j). Specifically, SP1
neurons achieve a higher spike rate especially compared to SP2, which,
in turn, agrees with the model-based observation of increased axonal
low-voltage activated Ca-conductance of SP1 (Fig. 5e). Moreover, SP1 is
more electrotonically compact than SP2 (Fig. 5j). We conclude that, by
virtue of mapping SP1–3 to RS1–3, themultimodal comparison between
models (including their associated in vitro experiments) and in vivo
clusters yields several distinct properties: a difference in axonal low-
voltage activated Ca-conductance (SP1 and SP3 vs. SP2), a morphology
difference in the basal dendrite bifurcation distance below the soma
(mainly in SP1 vs. SP3) that, in turn, impacts the spike propagation
speed, and, finally, SP1 being more electrotonically compact than SP2.

Multi-channel features separate inhibitory Pvalb and Sst
FS units are most typically associated with inhibitory cell classes that
are inherently heterogeneous. For example, Pvalb includes fast-spiking
basket cells as well as Chandelier cells, while Sst includes Martinotti
and non-Martinotti cells. We also found that this diversity of inter-
neurons is reflected in FS1–3.While we focused our analysis on the two
most populous inhibitory classes, Pvalb and Sst1, we saw no clear
mapping between FS1–3 and Pvalb/Sst. We, therefore, decided to
introduce an additional multi-channel feature, the symmetry index
(see Methods), quantifying the spatial characteristics of spike propa-
gation and, in this manner, accounting for another aspect of

Fig. 4 | Classification of one-channel EAP (extracellular action potential) fea-
tures of single-cell models and correspondence to in vitro data modalities.
a, b Bio-realistic single-cell models (one aspiny, AP, panel (a); one aspiny, SP, panel
(b)) activated via synaptic activity along their reconstructed dendrites result in
spiking. Top: synaptic input (black bars: spike raster plot); Middle: intracellular
voltage Vi trace (orange); Bottom: extracellular voltage Ve (green) close to the
soma (location designated by the green square). Time traces (left) andmean Vi and
EAP waveforms (right). cOne-channel EAP analysis from single-cell models (n = 33,
blue: AP; red: SP) and in vivo units (light gray: fast-spiking (FS) units; dark gray:
regular-spiking (RS) units). d Comparison of TPW (trough-peak width, two-sample
t-test, two-sided, p =0.00025) and REP (repolarization time, Mann–Whitney U test,
two-sided,p =0.00024) from simulated EAPwaveforms betweenAP (n = 18) and SP
(n = 15) models. Box plots show the center line as the median, and box limits as
upper (75%) and lower (25%) quartiles. The whiskers extend from the box limits by
1× the interquartile range. ***p <0.001. e Comparison of intrinsic properties

extracted from in vitro Vi dynamics between the AP (n = 18) and SP (n = 15) neurons
(also used to generate the single-cell models). Mann–Whitney U test (two-sided)
was used for width, adaptation, τ, and input res. (resistance), ramp time, and F/I
slope; two-sample t-test (two-sided) used for rheobase, spike rate, and Vm rest
(resting potential). ***p <0.001. f Model-based classifier: classifier trained on one-
channel EAP features (TPW, REP) of single-cell models to discriminate between AP
(n = 18) and SP (n = 15) neurons (left: confusion matrix; middle: beta coefficients of
the linear SVM classifier, bootstrap sampling 100 times; right: Sankey diagram
showing the prediction on the test dataset). g Same layout as in (f), experiment-
based classifier: classifier trained on one-channel EAP features (TPW, REP) of in vivo
units to discriminate between FS (n = 281) and RS (n = 923) populations labeled via
K-means clustering.hOne-channel EAP features of single-cellmodels (model labels:
Cre-reporter lines, 4 Scnn1a, 6 Rorb, 5Nr5a1, 9 Pvalb, and9 Sst) classified as FSorRS
by using the experiment-based classifier. Source data are provided as a Source
Data file.
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morphology and its impact on the spike signature. Using the symmetry
index to look at FS1–3, we saw a separation between FS1 (symmetric
spike propagation) and FS2/FS3 (asymmetric spike propagation)
(Fig. 6a, b). Notably, a clearer separation between Pvalb and Sstmodels
was achieved based on the symmetry index (Fig. 6b, right; n = 9 Pvalb
models, n = 9 Sst models). We conclude that while multi-channel fea-
tures 1/Vbelow and 1/Vabove do not exhibit clearmapping, accounting for

an additional multi-channel feature, the symmetry index, separates
biophysical models of Pvalb and Sst.

Which properties canbededuced from themodels and associated
in vitro data? Once more, we consider three data modalities: models,
morphologies, and intrinsic properties from the in vitro Pvalb (n = 9)
and Sst (n = 9) experiments (Table S1). Pairwise comparison between
Pvalb and Sst models at the level of ionic conductances reveals
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statistically significant differences in three conductances, with the
effect size being largest for Kv3.1 (Fig. 6c, f). Elevated Kv3.1 expression
is a key differentiator between Pvalb and other inhibitory cell types,
i.e., increased Kv3.1 results in a shorter spike width and fast
afterhyperpolarization24,38–40. In termsof cellularmorphology, pairwise
comparison of morphology features (bifurcation distance above and
below soma) from the reconstructions in the Pvalb (Fig. 6d, left, dark
blue) and Sst (Fig. 6d, middle, orange) cells show a statistically sig-
nificant difference in the bifurcation distance between above and
below soma in Sst cells. Specifically, while Pvalb morphologies are
symmetric (i.e., above vs. below bifurcation distance remains similar),
Sst possesses a more asymmetric morphology with the bifurcation
distance above being longer than below their soma (Fig. 6d). To look at
how the bifurcation distance affects spike propagation, we plotted the
bifurcation distance above (positive values) and below (negative
values) against the spike propagation speed V in the model data. We
found that the bifurcation distance above and below the soma is
robustly related to the inverse of the EAP propagation velocity (Fig. 6e,
right, slope = 2.67, the correlation coefficient r = 0.8, p-value = 5.12 ×
10−9). Once more, a larger bifurcation distance results in a lower spike
propagation speed. Thus, the increased bifurcation distance asym-
metry leads to more asymmetric spike propagation along Sst
morphologies. On the hand, the symmetry of Pvalbmorphologies with
respect to bifurcation distance leads to more symmetric spike pro-
pagation. Pairwise comparison of in vitro intrinsic electrophysiology
properties between Pvalb and Sst (from the same experiments used to
develop the Pvalb and Sst experiments) reveals several differences in
peak spike rate, rheobase, resting potential (Fig. 6g), among others
supporting that Pvalb is more electrotonically compact compared to
Sst, which agrees with the observation about differences in Kv3.1 dif-
ference (Fig. 6c, f). In summary, the comparison between Pvalb and Sst
models, morphologies, and intrinsic properties points to a difference
in Kv3.1, in bifurcation distance, and in several intrinsic properties
shown to separate between Pvalb vs. Sst (e.g., peak spike rate) and
shape intracellular dynamics as well as the EAP waveform.

We also examined whether differences in spike propagation
symmetry between Pvalb and Sst can be attributed to morphology
orientation. While the elongated somadendritic axis of pyramidal
neurons can give rise to spike propagation asymmetry41, the impact of
the angle between an extracellular probe and the cellular morphology
of inhibitory cells remains unknown. In a separate series of simulations,
we varied the angle between the extracellular probe and morphology
across Pvalb and Sst models and found that, indeed, certain EAPmulti-
channel metrics, including the symmetry index, are affected by this
parameter with certain constellations exacerbating the pairwise dif-
ference between Pvalb and Sst (Fig. S8). Even so, the robust and highly
significant differences in symmetry index found between inhibitory
classes can hardly be a mere reflection of rotation effects. While we
cannot exclude this parameter from contributing to the trends

observed, the evidence clearly points to biophysical differences
between the clusters rather than aspects of the experimental layout.
We conclude that Pvalb is distinct from Sst across multiple in vitro
modalities considered in our work, a fact also reflected in their distinct
EAP signatures that allow their in vivo identification and separation
using multi-channel EAP properties.

Comparisons with ground-truth channelrhodopsin-tagged
Pvalb and Sst units in vivo
So far, we deduced cellular properties of in vivo units by comparing the
simulated EAP waveform from models linked to specific in vitro
experiments of known identity to in vivo recorded EAP waveforms, and
vice versa. Opto-tagging is amethod that can link EAPmeasurements to
specific cell types by directly photo-stimulating cells that express the
light-activated channel channelrhodopsin-2 (ChR2) to a restricted
neuronal subpopulation under genetic control42,43. Opto-tagging
experiments can thus offer ground-truth data with recorded EAPs ori-
ginating from known populations of neurons. Here, we used a chan-
nelrhodopsin reporter line (Ai32) crossedwith a driver line inwhich Cre
recombinase expression was driven by Pvalb or Sst promoter (Fig. 7a,
dark green region). This process resulted in ChR2-tagged Pvalb and Sst
neurons that responded to light stimulation with short latency and
reliably (Fig. 7b). Extracellular recordings with Neuropixels in these
animals detected 25 well-isolated Pvalb units in 8 Pvalb-Cremice and 18
Sst units in 12 Sst-Cre mice (Fig. 7c; see Methods; Source Data 3).

Using this ground-truth data set for two major inhibitory cell
classes, we pursued one- and multi-channel EAP analysis. For one-
channel EAP features (TPW, REP), the opto-tagged Pvalb units exhibit
clear overlap with FS from experiments with wild-type animals. Sst
units aremuchmorediffuse, spanning across the FS/RS-space (Fig. 7d).
Direct comparison of one-channel features (TPW, REP) and in vivo
activity metrics like spike frequency show that Pvalb is well-separated
from Sst (Fig. 7e, top). Pvalb and Sst also exhibit clear differences in
terms of multi-channel EAP propagation, especially when looking at
the symmetry index. Specifically, the optotagged recordings reveal
that Pvalb exhibits a symmetric and fast propagation profile while Sst
exhibits less symmetric propagation and increased variability (Fig. 7e,
f). A pairwise comparison of the symmetry index for the Pvalb and Sst
optotagged units confirms that Pvalb shows more symmetric EAP
propagation compared to Sst (Fig. 7g), in agreement with simulations
(Fig. 6b). We conclude that in vivo ground-truth opto-tagging experi-
ments show that Pvalb and Sst are separable in termsof one- andmulti-
channel properties (symmetry index) in line with findings from the
computational models.

We also looked for functionaldifferencesbetweenPvalb andSst in
the opto-tagged units. First, we found that Pvalb exhibits higher spike
time variability than Sst (Fig. 7h, left). More interesting differences
appear for phase-locking to ongoing LFP oscillations. Specifically, we
found that Pvalb exhibits stronger phase coupling than Sst for slower

Fig. 5 | Distinct cellular properties of multi-channel regular-spiking (RS1–3)
clusters. a Clustering of spiny (SP) models using K-means clustering based on
multi-channel extracellular action potential (EAP) features. Both the elbowmethod
and density function analysis independently identify three multi-channel SP clus-
ters (left: within-cluster sum of squares (WCSS) and density function, broken red
line: the optimal number of clusters; right: model-based SP clusters; inset: mean
EAP-waveform of each RS-population). SP1–3 and RS1–3 are shown using themulti-
channel features 1/Vbelow and 1/Vabove (the inverse of spike propagation velocity
below/above soma location). b Spike propagation along the simulated probe as a
function of distance from the soma (channel with largest EAP amplitude) for the
three SP classes, SP1–3 (gray lines: propagation of individualmodels; n = 5 SP1, n = 7
SP2, n = 3 SP3; colored lines: mean ± SD (standard deviation)). c The model-based
classifier (random forest) trained on the multi-channel features (1/Vbelow and 1/
Vabove) identifies SP1–3 (left: confusion matrix; middle: feature importance based
on classifier; right: Sankey diagrams show the prediction on the test dataset).

d Same layout as in (c), the experiment-based classifier was trained on multi-
channel in vivoEAP features to discriminate betweenRS1–3.eComparisonbetween
model conductances ascribed to SP1–3. The largest effect size across the con-
ductances is found for axonal Ca_LVA. # indicates Cohen’s d effect size > 0.8.
fBifurcation distance (w) of one bifurcation node in the reconstructedmorphology
of a neuron is defined as the projection of the vector (v) from soma (S, red dot) to
the position of the bifurcation node (N, blue dot) projected to a line (u) connecting
the soma (S) to a node (L) in y-axis. gMorphology bifurcation distance above soma
(left) and below soma (middle). Right: inverse of wave propagation velocity vs. the
bifurcation distance (line: linear fit). h, i Intrinsic properties from in vitro experi-
ments based on SP1–3 (subthreshold and spiking responses). j Comparison of
cellular time constant (τ) and max spike rate (response to dc current injections)
among in vitro experiments based on SP1–3. # indicates Cohen’s d effect size > 0.8.
Source data are provided as a Source Data file.
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(theta) oscillations. Furthermore, Pvalb has a significantly different
spike phase, especially for faster oscillations (beta, low-, and high-
gamma) than Sst, with Sst units spiking in a later phase by about
40–50°. (Fig. 7h). We note the similarity of this pattern with the spike
phase relationshipofwild-typeunits FS1 andFS2 (Fig. 3e).We conclude
that the opto-tagging experiments reveal that, beyond separable in
terms of multi-channel features, Pvalb units also have more variable
spiking as well as stronger coupling to theta and earlier spiking for
faster oscillations compared to Sst.

Discussion
Understanding the role and function of cellular taxonomies in beha-
vior is an important challenge in an era where advancements in

sequencing technologies continuously refine these taxonomies1–4,9,10.
Extracellular electrophysiology recordings offer anunparalleled ability
tomonitor cellular activity in vivo across spatiotemporal levels yet lack
cell type-specificity, with optotagging making it possible to label only
oneor twodistinct cell types per experiment21,44,45. Herewe introduce a
framework for the identification and characterization ofmajor cortical
cell types solely based on their extracellular electrophysiology sig-
natures with multiple data modalities. Our starting point is EAP
waveforms recorded from high-density Neuropixels probes in the
mouse primary visual cortex (V1). Using one-channel EAP features, we
separated units into two clusters, FS and RS, that exhibit differences
both in terms of EAP waveform and functional properties such as LFP
entrainment.We separately looked atphasecoupling inprominent LFP
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oscillation bands (theta, alpha, beta, low and high gamma) and found
that FS units are consistently more entrained across LFP bands com-
pared to RS units. In agreement with other studies (e.g., ref. 13), FS and
RS exhibit significantly higher phase-locking during drifting gratings
than during spontaneous activity across LFP bands.Whenwe looked at
the preferred spike phase, we found that FS spiking came earlier in the
cycle than RS in beta and low gamma. These observations are in line
with the studies of neocortical unit activity in humans and monkeys35.
Specifically, FS phase precedence is also in line with35 and opposite to
the hippocampal activation pattern observed during high-frequency
ripples36. When we looked at phase coupling along the cortical depth,
we found a diverse landscape. While FS remains consistently more
entrained than RS, FS phase precedence over RS is spatially inhomo-
geneous and particularly pronounced in the granular region (broadly
layer 4) for beta, low and high gamma. In contrast, in the supragranular
and infragranular regions, FS and RS clusters exhibit less pronounced
phase differences across LFP bands despite significant differences in
coupling strength. We conclude that the FS and RS clusters represent
larger families of diverse cell classes organized along the cortical
network serving different roles in vivo.

Expanding the feature set from one-channel to multi-channel
EAP features results in further separationwithin the RS and FS groups
into six finer groupings, three FS (FS1–FS3) and three RS (RS1–RS3)
clusters. We show that the six clusters exhibit functional differences
in their dynamics to visual stimuli (e.g., drifting gratings in head-fixed
animals) and differential coupling to ongoing LFP oscillations.
Looking at the properties of these finer clusters with the cortical
depth, we found increased diversity in their spike-LFP coupling. RS3,
for example, exhibits almost double the coupling strength of RS1 in
the supragranular region for beta and low gamma (RS2 is an inter-
mediate case). On the other hand, in the infragranular region and for
low gamma, RS3 and RS1 spike phase is similar, while RS2 comes
earlier (the same happens for high gamma). The differences in RS1-3
are consistent with classes of neurons that possess different bio-
physical setups as well as a divergence in connectivity patterns. It is
known, for example, that the biophysical properties of excitatory V1
neurons vary and depend on cortical depth, which, in turn, is
expected to have an impact on their firing properties and
burstiness1,34,46,47. In addition, their intricate connectivity and pro-
jections along the anatomical hierarchy can result in a spectrum of
functional clusters among excitatory V1 cells that reflect upstream
input segregation from earlier brain regions (e.g., various thalamic
areas34,48,49). The combination of diverging biophysical properties of
V1 excitatory cells combined with localized and class-specific con-
nectivity gives rise to functionally distinct and input-specific RS1–3
clusters. Furthermore, behavior and brain state can furthermodulate
the response properties of excitatory clusters along V134. The afore-
mentioned points to a network consisting of clusters of distinct
biophysical properties and functional in vivo responses that,

nevertheless, can be organized and reconfigured in multiple ways,
depending on the external input and internal state.

While excitatory cells exhibit differences in visual responses
(though with varying degrees of sensitivity and selectivity), inhibitory
neurons do not show strong or selective responses confirming
observations using the same visual inputs13. Even so, they play a central
role in shaping cortical activity in terms of orchestrating and pat-
terning ongoing and/or evoked oscillations7,50–53. Indeed, when we
looked at the phase-coupling properties of FS1–3, we found differ-
ences in the alpha, beta, and gammabands. Furthermore, in additional
analysis, we observed differences between FS1 and 3 (mainly in the
gamma bands) as a function of cortical depth. While the diversity of
inhibitory coupling to ongoing oscillations remains elusive in V1
(though see33,34). In agreement with other V1 studies34,54, our experi-
ments support the observation that themost prominent LFP pattern in
the waking V1 is a theta-band oscillation (hypothesized as an evolu-
tionary precursor of the primate alpha activity in the visual cortex).
Yet, we also found that FS1–3 (but also RS1–3 as well as FS–RS) dif-
ferentiate their coupling in higher LFP-bands, i.e., in alpha, beta, and
gamma, rather than in the band of their most prominent pattern
(theta). Notably, inhibitory parvalbumin- and somatostatin-positive
interneurons exhibit large amplitude and rhythmic hyperpolarization
at 3–6Hz in V1 during behavior34,54.

The distinct properties of FS1–3 in EAP waveform and coupling
strength/phase to LFP oscillations are reminiscent of the distinct hip-
pocampal inhibitory classes and their coupling to local theta, gamma,
and sharp wave ripples, e.g., ref. 36,52,53,55–57. For example, two
putative inhibitory classes located in the pyramidal layer and the
alveus/stratum oriens of hippocampal CA1 with distinct EAP wave-
forms also exhibit differences in discharge probability and theta spike
phase with one coming earlier by about 30° and both preceding pyr-
amidal spiking36. The picture is reversed during ripple activity when
phase differences between the two inhibitory clusters are minimized
and pyramidal spiking precedes both36. In vivo, recordings combined
with tedious morphological characterization unravel distinct coupling
features, e.g., between parvalbumin-expressing basket cells, bis-
tratified and cholecystokinin-expressing interneurons differing their
spike phase by 30°–40° during the gamma cycle57. The coupling
strength, as well as the phase differences observed between distinct
cell classes during oscillations, are in line with what we see for FS1–3.
Excitatory pyramidal neurons in the hippocampus and neocortex also
form distinct morphological, molecular, connectivity, and functional
populations58–65. A major organizing principle of excitatory neurons is
cortical depth and the presence of functionally distinct sublayers66—in
CA1, this organization is also reflected in the cellular and functional
properties with deep cells spiking faster, burstier, and exhibiting
stronger modulation for slow oscillations67,68. The neocortical organi-
zation is less understood with respect to its functional modules and
their role in oscillations (although see ref. 69–73), yet the RS1–3

Fig. 6 | Distinct cellular properties of multi-channel FS clusters. a The spike
propagation symmetry index separates FS1 from FS2–3 (left, circles: experimental
measurements; middle: effect size measured by Cohen’s d; right: mean spatio-
temporal spike propagation ofmulti-channel clusters FS1–3;n = 130 FS1, n = 82 FS2,
n = 69 FS3). Kruskal–Wallis H-test, F = 111.41, p-values corrected using the
Holm–Bonferroni method for multiple tests, ***p <0.001. Error bars represent a
bootstrap 95%confidence interval.b Left: themulti-channel features (Vbelow, Vabove)
clustering FS units (gray) and superposed multi-channel EAP features of models of
Pvalb (blue, n = 9) and Sst (yellow, n = 9) neurons. Right: spike propagation sym-
metry index for Pvalb and Sst single-cell models. two-sample t-test, two-sided,
p =0.000998. c Pairwise comparison of model conductances between Pvalb and
Sst models. The biggest andmost statistically significant difference is shown in the
dendritic Kv3.1 conductance. Mann–Whitney U test, two-sided, *p <0.05.
d Morphology bifurcation distance above (two-sample t-test, two-sided, p =0.45)
and below (two-sample t-test, two-sides, p =0.03) soma between Pvalb (left, dark

blue) and Sst (right, orange) models. *p <0.05. e The inverse of spike propagation
velocity vs. the bifurcation distance (line: linear fit; + indicates above soma, −
indicates below soma). f Pairwise comparison of Pvalb vs. Sst model conductances
(toppanel, −log10(p-value), black line:p =0.05; bottompanel, Cohen’s d effect size,
black lines: |d| = 0.8). The comparison of dendritic Kv3.1 conductance is shown in
(c). Mann–Whitney U test, two-sided, *p <0.05. g Left: pairwise comparison
between intrinsic properties of Pvalb and Sst neurons measured in vitro (same
experiments as the ones used to develop single-cell models). Maximum spike rate
to dc current injections separates betweenPvalb and Sst neurons.Mann–WhitneyU
test, two-sided, p =0.0067; Right: pairwise comparison between nine intrinsic
properties of Pvalb vs. Sst neurons (top: statistical significance expressed in terms
of −log10(p-value); solid line: p-value = 0.05, broken line: p-value = 0.01; bottom:
Cohen’s d effect size, solid black line: |d| = 0.8) also used to generate the compu-
tationalmodels. Mann–WhitneyU test, two-sided, *p <0.05, **p <0.01, ***p <0.001.
Source data are provided as a Source Data file.
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coupling profile points to the existence of a cellular and functional
organization along the depth axis.

To map between the cellular in vitro classes and subclasses
and in vivo EAP-based clusters, we develop biophysical models
that reflect key properties of in vitro cell types and use these
models to simulate EAP properties. We use a computational
optimization workflow to generate and evaluate biophysically

realistic, cell type-specific cellular models with active con-
ductances at scale24. We then use two-way classification to map
in vitro classes to in vivo clusters and vice versa, with models
providing the link between the two worlds and the associated
class/cluster label. In a stepwise manner, we show that a set of
one-channel EAP features (TPW, REP) separates in vivo EAP clus-
ters in terms of spike rate (FS vs. RS units) and in vitro
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morphology classes (AP vs. SP neurons). The fact that narrow EAP
waveform units map to FS and AP while wide units map to RS and
SP is in line with previous work14–18,27. A fraction of simulated
excitatory neurons also mapped onto FS units that we attribute to
some excitatory classes that possess narrow spike width and
some model discrepancy that prohibits capturing all EAP features
to their full extent. The latter can lead, in a few cases, to mis-
labeling. Yet, it is the use of these models that also enables linking
seemingly disparate data sets in a manner that results in specific
and testable hypotheses about the identity and properties of the
various clusters (e.g., in terms of the underlying conductance or
morphology differences between the in vivo clusters).

Looking at RS1–3, we found that RS1/SP1 and RS3/SP3 are elec-
trotonically more compact than RS2/SP2, with a possible biophysical
mechanism accounting for such differences being the axonal low-
voltage activated Ca-conductance. Moreover, we found basal dendrite
differences between RS2/SP2 and RS3/SP3, a feature that could
potentially explain the EAP waveform symmetry between RS1 and 3
clusters. For FS1–3, we found that biophysical models of Pvalb and Sst
broadly capture the multi-channel properties of FS1–3 and, specifi-
cally, the distinct symmetry of FS1 vs. FS2–3 spike propagation.
Notably, Sst cells are diverse in their morphology, which resulted in a
wider range of multi-channel features. Comparing Pvalb and Sst
models, morphologies, and intrinsic properties, we found a difference
in Kv3.1, in bifurcation distance, and in several intrinsic properties
shown to separate between Pvalb vs. Sst (e.g., peak spike rate) and
shape intracellular dynamics as well as the EAP waveform. A set of
in vivo ground-truth opto-tagging experiments validated that Pvalb
and Sst are separable in terms of one- and multi-channel properties,
further supporting our observations based on computational models.

Our study shows that multi-channel EAP features can critically
contribute to the separation of meaningful in vivo clusters. The key
datamodality reflected in thesemulti-channel properties is the cellular
morphology22,25,26. It follows that for computationalmodels to account
for such properties, they need to account either for the fully recon-
structed morphology24 or, at the very least, for key aspects of it41.
Moreover, ionic mechanisms along the dendritic morphology also
impact spike propagation intracellularly74,75 and extracellularly25,26,32,
pointing to an interesting possibility: the use of optotagging experi-
ments to measure cell type-specific (e.g., Pvalb and Sst) multi-channel
EAP properties in vivo and, in a second step, using these properties to
constrain model parameters along the dendritic arbor where intra-
cellular data is challenging to collect.

Notably, while Neuropixels recordings result in large numbers of
recorded units, the bottom-up approach (i.e., generating data from
transgenic lines in vitro by whole-cell patch-clamp and morphology
reconstructions of labeled neurons) is a lower-yield and labor-intense
process. In addition, the computational framework to turn the in vitro
data (features of electrophysiology traces in combination with

reconstructed morphologies) into biophysically realistic all-active
single-cell models involves computationally intensive multi-objective
optimization procedures (see Methods). This results in a natural
imbalance in our data sets: a large number of isolated in vivo units
compared to a smaller number of in vitro recorded and reconstructed
neurons and models. The ever-increasing availability of high-quality,
annotated cellular electrophysiology, morphology, and tran-
scriptomics data—the precondition to generate faithful, cell type-
specific computational models at any scale—is underway and is
expected to tackle the imbalance between the number of cellular
models and in vivo recorded units. The larger the number of models
and cell classes reflected in them, the better and more refined classi-
fiers could be trained tomap in vitro types to in vivo EAP clusters.With
increasing cellular data and single-cell model availability, increasingly
finer classification of EAP signatures can be achieved across different
brain areas and even species that allows deducing cellular and func-
tional differences between cell classes across data modalities.

Methods
In vivo neuropixels recordings
All in vivo recordings come from the Allen Brain Observatory Visual
Coding Neuropixels dataset23, accessible via the AllenSDK (https://
allensdk.readthedocs.io/en/latest/visual_coding_neuropixels.html) and
the DANDI Archive (https://gui.dandiarchive.org/#/dandiset/000021).
Recordings were performed in awake, head-fixed mice allowed to run
freely on a rotating disk. During the recording, mice either passively
viewed visual stimuli (flashes) or viewed amean-luminance gray screen.
Data were collected from 25 wild-type C57BJ/6 J mice (24 male, 1
female), and 8 Pvalb-IRES-Cre (6 male, 2 female) and 12 Sst-IRES-Cre (8
male, 4 female) crossed with an Ai32 channelrhodopsin reporter line76.
Cre+ cells from Ai32 lines are highly photosensitive due to the
expression of Channelrhodopsin-277. TheNeuropixels probe can record
from 384 contacts across 3.84mm of tissue coverage (selectable from
960 available sites on a 10mm length shank). In this study, we analyzed
recordings from the primary visual cortex (V1). All extracellular spike
data were acquired with Neuropixels probes21, with a 30 kHz sampling
rate (which achieves 0.033ms temporal resolution) and a 500Hz
analog high-pass filter. Spike times and waveforms were automatically
extracted from the raw data using KiloSort278 (see Source data set).

Biophysical realistic all-active single-cell models
We use the biophysically realistic all-active single-cell model for
18 aspiny (AP) and 15 spinies (SP) mice neurons. The all-active
models contain active conductances along the entire neuronal
morphology. The dendritic arbors are adopted in the models
from the reconstructed morphology. The models were generated
with a computational optimization pipeline (Fig. S2) aiming for
models that reproduce the intrinsic firing patterns and spike
properties of individual neurons from two data modalities: the

Fig. 7 | In vivo extracellular action potential (EAP) and functional properties of
opto-tagged Pvalb and Sst neurons. a Light sensitive channelrhodopsin-2 (ChR2)
channels were virally expressed in two inhibitory cell populations, Pvalb and Sst, in
mouse V1 (dark green areas). The animals were then implanted with Neuropixels
probes. b Example units responding to light activation (light blue regions) in V1.
Top: spike rasters; Bottom: spike frequency. Left: a non-responsive unit; Middle: a
light-responsive Pvalb unit; Right: a light-responsive Sst unit. c Examples of multi-
channel EAPs of Pvalb units (dark blue) and Sst units (orange). Two of the units are
the same ones as in panel (b) (boxes). d One-channel EAP features (trough-peak
width: TPW; repolarization time: REP) for the Pvalb (dark blue, n = 24) and Sst units
(orange, n = 18) from the optotagging experiments (inset: mean EAP waveforms;
light gray: FS units, dark gray: RS units, from wild-type animals as in Fig. 2d).
eComparison of EAP properties between optotagged Pvalb (n = 24) and Sst (n = 18)
units (top: one-channel properties; bottom: multi-channel properties). Box plots
show the center line as the median and box limits as upper (75%) and lower (25%)

quartiles. The whiskers extend from the box limits by 1× the interquartile range.
Mann–Whitney U test, two-sided, **p <0.01, ***p <0.001. f EAP amplitude (left) and
propagation (right) along the extracellular channels as a function of distance from
the soma (taken as the channel with the largest EAP amplitude) for the optotagged
Pvalb (n = 24) and Sst (n = 18) units (gray lines: individual units; colored lines:
mean ± SD (standard deviation)). g Comparison of the symmetry index for Pvalb
(n = 24) vs. Sst (n = 18) units (two-sample t-test, two-sided, p =0.012). h Left: Com-
parison of response pattern during drifting gratings in the opto-tagging experi-
ments (CV: coefficient of variation). Box plot representation is similar to that in
panel (e). Mann–Whitney U test, two-sided, p =0.0076, n = 24 Pvalb, n = 18 Sst;
Right: spike-field coherencymetric kappa and preferred spike phase of optotagged
Pvalb and Sst for various LFP frequency bands. Data are presented as mean± SEM
(standard error of themean).Mann–WhitneyU test, two-sided, *p <0.05, **p <0.01,
***p <0.001. Source data are provided as a Source Data file.
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reconstructed morphology and the somatic electrophysiology
response from in vitro whole-cell patch-clamp experiments. The
models were fit with several voltage-gated sodium, potassium,
and calcium conductances expressed at the cell soma, axon, and
dendrites, using data from individual neurons in the Allen Cell
Types Database (http://celltypes.brain-map.org/data). The opti-
mization pipeline (multi-objective genetic optimization) was used
to optimize the conductance densities by training the models
with experimental somatic recordings in response to step
currents24. The active conductances and passive properties
marked according to their inclusion in each of the morphology
sections (apical, basal dendrites, soma, and axon) are reported in
Table 1. We optimized both the spiking properties of the cell
model (spiking timing, spike rate, etc.) given a particular mor-
phology and features of the intracellular action potential wave-
form (spike amplitude, width, etc.) Only the models that passed
certain criteria (Tol = 0.5 for both spike amplitude and spike
width) were selected, where Tol is the tolerance. Specifically, the
spike amplitude of the model should be in the range of [1 − Tol,
1 + Tol]*A_exp, while the spike width of the model should be in the
range of [1 − Tol, 1 + Tol]*W_exp, where A_exp, W_exp represent
the spike amplitude and width from experiments.

After a single-cell model is optimized, we simulated the extra-
cellular potential using NEURON 7.5 simulator (https://www.neuron.
yale.edu/neuron/) in combination with the Brain Modeling Toolkit
(https://github.com/AllenInstitute/bmtk). This toolkit can simulate a
variety of intracellular dynamics (e.g., spikes andmembrane voltages),
as well as compute additional data modalities such as the extracellular
potential. The extracellular potentials were computed using the line-
source approximation, which assumes that membrane current is uni-
formly distributedwithin individual computational compartments and
themedium is homogenous and isotropic79. Eachmodel was simulated
at a sampling rate of 30 kHz, identical to the acquisition rate of in vivo
recordings. Each cell model received Poisson-like synaptic input
(simulation time: 3 s). We recorded the extracellular potential in a
Neuropixels-like electrode array, which is a dense grid (5 µm spacing)
consisting of 16 columns and 240 rows (a total of 3840 recording
channels). To mimic Neuropixels recordings, we averaged extra-
cellular potential within a 10 µm-by-10 µm area for each recording site
Table 2. The extracellular action potential (EAP) was calculated based
on the spike-triggered average of extracellular potentials.

Data analysis
Feature extraction. Postprocessing included passing data through
a 300 Hz high pass filter before extracting EAP waveforms. To

classify cell types, we first extracted features from the extra-
cellular waveform. With high-density electrodes, we can record
extracellular waveforms of a single unit from multiple sites. The
recording site with the largest amplitude (amplitude is the mag-
nitude of the extremum of the waveform; Fig. 2b, left) is defined
as the site closest to neuron soma, and the extracellular wave-
form recorded at this site we define as the one-channel waveform.
Since the Neuropixels probe has four staggered columns of sites,
we selected the two columns on the side of the probe with the
largest one-channel amplitude for the one- as well as the multi-
channel waveforms. The distance between sites is approximated
by their vertical spacing (20 µm). The multi-channel waveform of
a single unit includes EAPs from the channel with the largest EAP
amplitude and 10 additional channels above and below that
location, spanning ±200 μm. Similarly, in the models, we selected
the column of electrodes with the largest amplitude one-channel
waveform. As expected, the channel with the largest EAP ampli-
tude in the models was located close to the soma and AIS
location.

For the one-channel waveform (Fig. 2b, left), we calculated two
features: TPW (trough-to-peak width) and REP (repolarization time).
TPW measures the time that elapses from the EAP trough (the global
minimumof the curve) to the EAPpeak (the following localmaximum).
REP measures the time elapsed from the EAP peak to half of the peak
value. These two EAP features capture different aspects of the intra-
cellular potential, the speed of depolarization, and the subsequent
after-hyperpolarization17,31 and are commonly used to separate
between FS units and RS units.

For the multi-channel waveform (Fig. 2b, middle), we extracted
two additional features in the space domain: the inverse of the EAP
propagation velocity below (1/Vbelow) and above (1/Vabove) soma along
the neuropixels probe. Velocitymeasures how fast the EAP propagates
along the probe, with the point of reference being the EAP trough.
When the EAP propagates fast, the time difference between two
adjacent sites can sometimes be estimated as zero—to avoid infinite
numbers, we calculated the inverse of velocity instead of velocity. A
low value of the inverse of velocity indicates fast propagation. The
inverse of propagation velocity below (1/Vbelow) and above (1/Vabove)
soma was then estimated by linear regression of the EAP trough at
different sites against the distance of the sites relative to soma.We also
define the spread of a unit by the range with amplitude above 12% of
the maximum amplitude along the probe. Spread measures how far
the waveform can propagate along a probe.

Symmetry index of EAP propagation. From the multi-channel EAP
recordings, we defined a measure looking at the symmetry of spike
propagation in the vertical direction above and below the spike
initiation zone. Specifically, we defined the symmetry index (SI) as
the distance between each point (1/Vbelow, 1/Vabove) and the diagonal
line (y = −x). The distance from point (x0, y0) to the line ax + by + c = 0
can be calculated by the following equations:

SI =
∣ax0+by0+ c∣ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 +b2
p ð1Þ

Table 1 | Inclusion of each parameter in the morphology sections

Parameters Ra gpas epas cm Ih NaV KT Kd Kv3.1 Kv2 Im SK Ca
HVA

Ca
LVA

Apical √ √ √ √ √ √ × × √ × √ × × ×

Basal √ √ √ √ √ √ × × √ × √ × × ×

Soma √ √ √ √ √ √ × × √ × × × √ √

Axon √ √ √ √ × √ √ √ √ √ × √ √ √

Table 2 | Stimulus metrics

Stimulus Metric Description

Drifting
gratings

Modulation index The phase-dependent responses to
drifting gratings

f1/f0 The ratio of the 1st harmonic to the 0th
harmonic

Lifetime sparseness The sparseness of individual neurons
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where (x0, y0) = (1/Vbelow, 1/Vabove), and a = 1, b = 1, c =0 for y = −x. A
smaller value in the symmetry index indicates symmetric EAP propa-
gation, while a larger value in the symmetry index indicates more
asymmetric propagation.

Morphology bifurcation distance. The bifurcation distance (w) for
one bifurcation node is defined as the projection of the line (v) from
soma (S) to the position of the bifurcation node (N) projected to a line
(u) connecting the soma (S) to a node (L) in y-axis (Fig. 5f):

w = ∣∣v∣∣cosθ= ∣∣v∣∣
u: v

∣∣u∣∣ ∣∣v∣∣
=
u:v
∣∣u∣∣ ð2Þ

where θ is the angle between u and w and ∣∣u∣∣=
ffiffiffiffiffiffiffiffi
u:u

p
represents

the length of the line u. The bifurcation distance is then nor-
malized by the maximal absolute bifurcation distance for each
neuron. We excluded the absolute bifurcation distance larger
than 200 µm in the analysis because the node is too far away from
the soma. The bifurcation distances above and below soma were
calculated by the summation of the bifurcation distance for all
the bifurcation nodes above and below soma, respectively. The
sign of the bifurcation distances indicates the location of bifur-
cation nodes, where the positive sign indicates above soma, and
the negative sign indicates below soma. While comparing the
bifurcation distances below vs. above the soma, we used the
absolute value of the bifurcation distances.

Identification of EAP waveform clusters using K-means clustering.
To identify cell clusters, we applied K-means clustering on the EAP
features. K-means clustering is an unsupervised technique that seeks
to find centroids thatminimize the average Euclidian distancebetween
points in the same cluster to the centroid. The optimal number of
clusters was identified by two methods as in22.

One method is the standard elbow method which consists of
plotting the within-cluster sum of squares (WCSS) as a function of the
number of clusters andpicking the elbowof the curve as thenumberof
optimal clusters. The global impact of all clusters’ distortions is given
by the quantity:

Sk =
XK
j = 1

Ij ð3Þ

Ij =
X
xi2Cj

∣∣xi � μj ∣∣
2

ð4Þ

where Ij is the distortion of cluster j, which is ameasure of the distance
between points xi in clusterCj and its centroidμj. In this paper, we have
plotted the WCSS curve as Sk normalized by S1.

We also used a second method, the density function f(K), that
consists of plotting f(K) as a function of a number of clusters and
picking the minimal of the curve as the number of optimal clusters.
The f(K) is from80:

f Kð Þ=
SK

αKSK�1
, if SK�1 ≠0,K > 1

1,others

(
ð5Þ

αK =
1� 3

4Nd
, if K =2and Nd > 1

αK�1 +
1�αK�1

6 , if K >2and Nd > 1

(
ð6Þ

The value of f(K) is the ratio of the real distortion to the estimated
distortion and is close to 1 when the data distribution is uniform. The
smaller f(K), the more concentrated the distribution.

We selected K based on these two methods and applied K-means
to data with the appropriate number of K 1000 times with random
initial values.

For the one-channel clustering, we used the standard one-channel
waveform features (TPW and REP). To implement multi-channel clus-
tering, we adopt the two one-channel clusters (RS and FS) and cluster
each of them individually using the multi-channel features (1/Vbelow

and 1/Vabove).

Supervised machine learning for classification. The primary moti-
vation for constructing the two-way classifiers was bi-directional
mapping between the experiment-based and model-based results. We
built the experiment-based classifiers using experimental EAP features
and labels, then applied them to the model data to identify model
neurons in the experimental space. Similarly, we built themodel-based
classifiers using model EAP features and labels, then applied it to the
experimental data to identify experimental units in the model space.
To train the classifier for the unbalanced FS and RS, before training, we
have upsampled the ratio of FS and RS be 1:1. All classifications were
performed with Monte-Carlo cross-validation consisting of a 100
“bootstrap composites” of individual classifiers (the partitions are
done independently for each run) where the classifier was trained on a
subset of the data (75%), and then the confusion matrix and accuracy
were calculated on the left-out data (25%).We assigned the label based
on themost frequently predicted label of the composite classifiers. For
the classifier, we used a support vector machine (SVM) with a linear
kernel (regularization parameter C = 1) for two classes or a random
forest (gini criterion for splitting the nodes of a decision tree) formore
than two classes.

Single unit firing properties. For this analysis, we only accounted for
units with an EAP amplitude larger than 50 µV and a minimum of
100 spikes. The firing rate was calculated by N/T during the recording
session, where N is the number of spikes and T is the total time in
seconds. The coefficient of variation (CV) was calculated as the stan-
darddeviationof the interspike interval (ISI) dividedby themeanof ISI.
The local variation (LV) is similar to CV but measures variation in
adjacent ISIs and was calculated by81:

CV =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Xn
i= 1

ðTi � �TÞ2=�T
vuut ð7Þ

LV =
1

n� 1

Xn�1

i = 1

3 Ti � Ti+ 1

� �2
Ti +Ti + 1

� �2 ð8Þ

where Ti is the duration of the ith ISI, n is the number of ISIs, and
�T = 1

n

Pn
i = 1Ti is the mean ISI.

Visual stimulusmetrics. The three relevant visual stimulusmetrics for
drifting gratings used in the paper are f1/f0, themodulation index, and
lifetime sparseness (Table S2).

f1/f0: the ratio of the 1st harmonic (response at the drifting fre-
quency) to the 0th harmonic (mean response). A high f1/f0 ratio
indicates that the firing of the unit is modulated at the temporal fre-
quency of the grating, while a low f1/f0 indicates that the unit fires
relatively constantly during the presentation of the grating.

Modulation index (MI): quantifies the phase-dependent responses
to drifting gratings.MImeasures the difference in power of the visually
evoked response at a unit’s preferred stimulus frequency versus the
average power spectrum82. MI > 3 corresponds to strong modulation
of spiking at the stimulus frequency (indicative of simple-cell-like
responses).
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Lifetime sparseness: the selectivity of individual neurons to
drifting gratings at different orientations and temporary frequencies
was measured using lifetime sparseness, which captures the sharp-
ness of a neuron’s mean response across different stimulus
conditions83. A neuron that responds strongly to only a few condi-
tions will have a lifetime sparseness close to 1, whereas a neuron that
responds broadly to many conditions will have a lower lifetime
sparseness.

Detailed information about each metric is available at: https://
allensdk.readthedocs.io/en/latest/visual_coding_neuropixels.html.

Phase-locking analysis. For the phase-locking analysis, we only
include units with an EAP amplitude larger than 50 µV and aminimum
of 100 spikes. For each unit, the maximal number of spikes con-
sidered in the analysis is limited to 10,000. The percentage of phase-
locked units was calculated by the number of units that fires in a
preferred direction (assessed by the Rayleigh test) divided by the
total number of units. To test whether spikes preferred certain pha-
ses of the LFP, the instantaneous phase of the LFP at several fre-
quency bands (theta = 3–8Hz, alpha = 8–12 Hz, beta = 12–30Hz, low
gamma = 30–50Hz, high gamma = 50–90Hz) was first calculated,
using the Hilbert transform on each filtered LFP. 180° is marked as
the trough of the cycle. We chose pairs of units and LFPs recorded on
different neighboring electrodes. Each spike was assigned an
instantaneous phase for each frequency band. A strongly phase-
locked unit has a preferred direction in the phase histogram, while a
weak phase-locked unit has no preferred direction in the phase his-
togram (Fig. S6b). To determine if a neuron exhibited a significant
phase preference, we applied the Rayleigh test for non-uniformity.
With the Rayleigh test, the null hypothesis is uniformity (e.g., no
preferred direction), whereas the alternative is unimodality (e.g., a
single preferred direction). A cell was considered phase-locked at a
specific frequency range if the null hypothesis of uniformity of the
phase distribution could be rejected at a p-value < 0.001 using a
Rayleigh test84,85. When the test indicated non-uniformity, the phase
distribution was fitted to a circular normal distribution (von Mises
distribution), with the concentration parameter (kappa) indicating
the depth of the phase-locking in the direction of the mean phase.
The inverse of kappa is analogous to the variance of the normal
distribution. For large kappa, the distribution becomes very con-
centrated around the mean phase, indicating a high phase-locking.
Kappa values range from 0 to 1. Kappa and preferred phase were
calculated by a circular statistics toolbox pycircstat (https://github.
com/circstat/pycircstat).

Detection of opto-tagged neurons. The peri-stimulus time histogram
(PSTH) of spikes was used to present the light-evoked neuronal
responses. Time bins of 1ms of PSTHs were used to measure the
response to the light stimulation (square-wave pulses lasting 10ms).
To prevent contamination by light artifacts, we only counted spikes in
the window from 2 to 8ms of the 10ms light stimulation. The opto-
tagged neuron was detected when the average firing rate across trials
in the response window was higher than 25Hz and 2.5 times greater
than its firing rate in a corresponding time window immediately pre-
ceding stimulus onset.

Statistical analysis. The Shapiro–Wilk test was used to determine
whether the sample data had come from a normal distribution. The
two-sample t-test (for normal distribution) or the nonparametric
Mann–Whitney U test (for non-normal distribution) was used for sta-
tistical analysis of differences between means from two samples when
appropriate. One-way ANOVA (for normal distribution) or the non-
parametric Kruskal–Wallis H-test (for non-normal distribution) was
used for comparisons across the multiple groups, with p-values cor-
rected using theHolm–Bonferronimethod (a step-downmethodusing

Bonferroni adjustments) formultiple tests.We used two-sample z tests
for proportions to compare the percentages of phase-locked cells
between FS and RS and corrected the p-values via the
Holm–Bonferroni method for multiple tests.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The in vivo Neuropixels Dataset is available for download in Neurodata
Without Borders (NWB) format via the AllenSDK23: https://allensdk.
readthedocs.io/en/latest/visual_coding_neuropixels.html. The Neuro-
data Without Borders files is also available on the DANDI Archive23:
https://gui.dandiarchive.org/#/dandiset/000021. The in vitro electro-
physiology data and the reconstructed morphology used to generate
single-cellmodels are available at: https://celltypes.brain-map.org. The
cell ID used in the paper is listed in Table S1. The optotagging
experimental data set with Pvalb and Sst neurons is available at:
https://allensdk.readthedocs.io/en/latest/_static/examples/nb/
ecephys_optotagging.html. Source data are provided in this paper (see
Source data set). Source data are provided in this paper.

Code availability
The codes for calculating EAP features and clustering cell classes were
custom written in Python and are made available on GitHub (https://
github.com/yinawei/Mouse_V1_EAP_Analysis) with DOI (https://doi.
org/10.5281/zenodo.7679748). The all-active mouse single-neuron
models were generated using a Python pipeline and are also avail-
able on GitHub (https://github.com/yinawei/Mouse-all-active-models-
EAP) with DOI (https://doi.org/10.5281/zenodo.7679762).
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